2000
DOI: 10.1016/s0020-0190(00)00103-4
|View full text |Cite
|
Sign up to set email alerts
|

Computing the cycles in the perfect shuffle permutation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
2

Year Published

2013
2013
2022
2022

Publication Types

Select...
4
2
1

Relationship

1
6

Authors

Journals

citations
Cited by 12 publications
(6 citation statements)
references
References 8 publications
0
4
0
2
Order By: Relevance
“…These permutations have many applications (e.g., parallel processing [30], Fast Fourier Transforms (FFT) [30,11], Kronecker products [12,11], encryption [31], sorting [30], and merging [14,10,17]). Ellis et al [16,15] use a number-theoretic approach to compute representative elements of the disjoint cycles of the perfect shuffle and the k-way perfect shuffle, thus making a sequential in-place approach possible. Jain [21] relies on the fact that 2 is primitive root of 3 k for any k ≥ 1, which makes it possible to compute the representative elements of the disjoint cycles recursively for any N .…”
Section: Previous Work On Permutationsmentioning
confidence: 99%
“…These permutations have many applications (e.g., parallel processing [30], Fast Fourier Transforms (FFT) [30,11], Kronecker products [12,11], encryption [31], sorting [30], and merging [14,10,17]). Ellis et al [16,15] use a number-theoretic approach to compute representative elements of the disjoint cycles of the perfect shuffle and the k-way perfect shuffle, thus making a sequential in-place approach possible. Jain [21] relies on the fact that 2 is primitive root of 3 k for any k ≥ 1, which makes it possible to compute the representative elements of the disjoint cycles recursively for any N .…”
Section: Previous Work On Permutationsmentioning
confidence: 99%
“…La factorisation du k-perfect shuffle est un problème résolu dans Ellis et al (2002). La méthode est basée sur le constat suivant.…”
Section: Diagonalisation Alternée Des Dépliages Intérêt Des Shufflesunclassified
“…On peut montrer que réciproquement, pour tout d|m, toute classe d'un élément de (Z/dZ) × selon k d multipliée par m/d est un cycle de σ k,n . Il reste alors à calculer ces classes, un algorithme pour ce faire est décrit dans Ellis et al (2002).…”
Section: Diagonalisation Alternée Des Dépliages Intérêt Des Shufflesunclassified
“…Using hashing, one can also design an algorithm using expected O(n log n) time and O(log n) bits of space without any assumption on π (interestingly, a different application of randomisation is known to help in leader election in anonymous unidirectional rings [21]). Better cycle leaders algorithms are known for some specific permutations, such as the perfect shuffle [11].…”
Section: Introductionmentioning
confidence: 99%