In contrast to the well-characterized chemotaxis and migratory behavior between the dorsal and ventral locations of the rumen by isotrichids, we hypothesized that chemotaxis toward soluble nutrients maintains entodiniomorphid protozoa in the particulate fraction. The objectives of these experiments were to compare the dose-responsive chemotaxis (1) toward different glucose concentrations when ruminal samples were harvested from fed versus fasted cows; (2) toward increasing concentrations of glucose compared with xylose when protozoa were harvested from a fed cow; (3) toward peptides of bacterial, protozoal, and soy origin; and (4) toward glucose when mixed ruminal protozoa were previously incubated for 0, 3, or 6h in the presence of emulsified polyunsaturated fatty acids (PUFA; Liposyn II, Hospira, Lake Forest, IL). In experiment 1, isotrichid protozoa decreased chemotaxis toward increasing glucose concentration when cows were fasted. Entodiniomorphids exhibited chemotaxis to similar concentrations of glucose as did isotrichids, but to a lesser magnitude of response. In experiment 2, xylose was chemotactic to both groups. Xylose might draw fibrolytic entodiniomorphid protozoa toward newly ingested feed. In contrast, even though isotrichids should not use xylose as an energy source, they were highly chemoattracted to xylose. In experiment 3, entodiniomorphids were not selectively chemoattracted toward bacterial or protozoal peptides compared with soy peptides. In experiment 4, despite isotrichid populations decreasing in abundance with increasing time of incubation in PUFA, chemotaxis to glucose remained unchanged. In contrast, entodiniomorphids recovered chemotaxis to glucose with increased time of PUFA incubation. Current results support isotrichid chemotaxis to sugars but also our hypothesis that a more moderate chemotaxis toward glucose and peptides explains how they swim in the fluid but pass from the rumen with the potentially digestible fraction of particulates.