Rare earth elements (REEs) or “technology metals” were coined by the U.S. Department of Energy, a group of seventeen elements found in the Earth’s crust. These chemical elements are vital and irreplaceable to the world of technology owing to their unique physical, chemical, and light-emitting properties, all of which are beneficial in modern healthcare, telecommunication, and defense. Rare earth elements are relatively abundant in Earth’s crust, with critical qualities to the device performance. The reuse and recycling of rare earth elements through different technologies can minimize impacts on the environment; however, there is insufficient data about their biological, bioaccumulation, and health effects. The increasing usage of rare earth elements has raised concern about environmental toxicity, which may further cause harmful effects on human health. The study aims to review the toxicity analysis of these rare earth elements concerning aquatic biota, considering it to be the sensitive indicator of the environment. Based on the limited reports of REE effects, the review highlights the need for more detailed studies on the hormetic effects of REEs. Aquatic biota is a cheap, robust, and efficient platform to study REEs’ toxicity, mobility of REEs, and biomagnification in water bodies. REEs’ diverse effects on aquatic life forms have been observed due to the lack of safety limits and extensive use in the various sectors. In accordance with the available data, we have put in efforts to compile all the relevant research results in this paper related to the topic “toxicity effect of REEs on aquatic life”.
Cardiovascular disease (CVD) is the number one cause of death worldwide. This condition resulted in huge research on CVD increasing the need for animal models suitable for in vivo research. Daphnia and zebrafish are good animal models for cardiovascular research due to their relative body transparency and easy culture property. Several methods have been developed to conduct cardiac performance measurement in Daphnia and zebrafish. However, most of the methods are only able to obtain heartbeat rate. The other important cardiac endpoints like stroke volume, ejection fraction, fraction shortening, cardiac output, and heartbeat regularity must use other programs for measurement. To overcome this limitation, in this study, we successfully developed a one-stop ImageJ-based method using kymograph macros language that is able to obtain multiple cardiac performance endpoints simultaneously for the first time. To validate its utility, we incubated Daphnia magna at different ambient temperatures and exposed zebrafish with astemizole to detect the corresponding cardiac performance alterations. In summary, the kymograph method reported in this study provides a new, easy to use, and inexpensive one-stop method obtaining multiple cardiac performance endpoints with high accuracy and convenience.
As a nicotinoid neurotoxic insecticide, imidacloprid (IMI) works by disrupting nerve transmission via nicotinic acetylcholine receptor (nAChR). Although IMI is specifically targeting insects, nontarget animals such as the freshwater shrimp, Neocaridina denticulata, could also be affected, thus causing adverse effects on the aquatic environment. To investigate IMI toxicity on nontarget organisms like N. denticulata, their physiology (locomotor activity, heartbeat, and gill ventilation) and biochemical factors (oxidative stress, energy metabolism) after IMI exposure were examined. IMI exposure at various concentrations (0.03125, 0.0625, 0.125, 0.25, 0.5, and 1 ppm) to shrimp after 24, 48, 72 h led to dramatic reduction of locomotor activity even at low concentrations. Meanwhile, IMI exposure after 92 h caused reduced heartbeat and gill ventilation at high concentrations. Biochemical assays were performed to investigate oxidative stress and energy metabolism. Interestingly, locomotion immobilization and cardiac activity were rescued after acetylcholine administration. Through molecular docking, IMI demonstrated high binding affinity to nAChR. Thus, locomotor activity and heartbeat in shrimp after IMI exposure may be caused by nAChR blockade and not alterations caused by oxidative stress and energy metabolism. To summarize, N. denticulata serves as an excellent and sensitive aquatic invertebrate model to conduct pesticide toxicity assays that encompass physiologic and biochemical examinations.
Antibiotics are extensively used in aquaculture to prevent bacterial infection and the spread of diseases. Some antibiotics have a relatively longer half-life in water and may induce some adverse effects on the targeted fish species. This study analyzed the potential adverse effects of antibiotics in zebrafish at the behavioral level by a phenomic approach. We conducted three-dimensional (3D) locomotion tracking for adult zebrafish after acute exposure to twenty different antibiotics at a concentration of 100 ppb for 10 days. Their locomotor complexity was analyzed and compared by fractal dimension and permutation entropy analysis. The dimensionality reduction method was performed by combining the data gathered from behavioral endpoints alteration. Principal component and hierarchical analysis conclude that three antibiotics: amoxicillin, trimethoprim, and tylosin, displayed unique characteristics. The effects of these three antibiotics at lower concentrations (1 and 10 ppb) were observed in a follow-up study. Based on the results, these antibiotics can trigger several behavioral alterations in adult zebrafish, even in low doses. Significant changes in locomotor behavioral activity, such as total distance activity, average speed, rapid movement time, angular velocity, time in top/bottom duration, and meandering movement are highly related to neurological motor impairments, anxiety levels, and stress responses were observed. This study provides evidence based on an in vivo experiment to support the idea that the usage of some antibiotics should be carefully addressed since they can induce a significant effect of behavioral alterations in fish.
The fin is known to play an important role in swimming for many adult fish, including zebrafish. Zebrafish fins consist of paired pectoral and pelvic with unpaired dorsal, anal, and caudal tail fins with specific functions in fish locomotion. However, there was no study comparing the behavior effects caused by the absence of each fin. We amputated each fin of zebrafish and evaluated their behavior performance in the 3D locomotion test using fractal dimension and entropy analyses. Afterward, the behavior recovery after the tail fin amputation was also evaluated, together with the fin regeneration process to study their relationship. Finally, we conducted a further study to confirm whether the observed behavior alterations were from pain elicited by fin amputation procedure or not by using lidocaine, a pain-relieving drug. Amputation in the caudal fin resulted in the most pronounced behavior alterations, especially in their movement complexity. Furthermore, we also found that their behavior was fully recovered before the caudal fin was fully regenerated, indicating that these behavioral changes were not majorly due to a mechanical change in tail length; instead, they may come from pain elicited from the fin amputation, since treatment with lidocaine could ameliorate the behavioral effects after the amputation procedure. However, lidocaine did not accelerate the behavior recovery process; instead, it caused the fishes to display some slight side effects. This study highlights the potential moderate severity of fin amputation in zebrafish and the importance of analgesia usage. However, side effects may occur and need to be considered since fin amputation is routinely conducted for various research, especially genomic screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.