Metal nanoframes have gained tremendous attention in the domain of modern research and development due to their distinctive 3D spatial structure, efficient physiochemical properties, and comparatively good activity. Different strategies have been implicated by the researchers to design nanoframes of varying chemical natures and shapes. Most of the synthetic protocols being adopted to design nanoframes consist of two main steps: nucleation and the growth of solid particles and, secondly, excavation of the interiors. In this context, many synthetic methods are overviewed. To show their unprecedented performance or activity, a few applications in catalysis, biomedicine, theranostics, SERS, the sensing of different materials, the reduction of CO2, etc., are also discussed.