Spatial Molecular Imager (SMI) is an automated microscope imaging system with microfluidic reagent cycling, for high-plex, spatial in-situ detection of multiomic targets (RNA and protein) on FFPE and other intact samples with subcellular resolution. The key attributes of the CosMxTM SMI platform (NanoString®, Seattle, WA) include: 1) high-plex and high-sensitivity imaging chemistry that works for both RNA and protein detection, 2) three-dimensional subcellular-resolution image analysis with a target localization accuracy of ∼50 nm in the XY plane, 3) large Hamming-distance encoding scheme with low error rate (0.0092 false calls per cell per gene) and low background (∼ 0.04 counts per cell per gene), 4) high-throughput (up to 1 million cells per sample, four samples per run), 5) antibody-based cell segmentation methods, and 6) compatibility with formalin-fixed, paraffin-embedded (FFPE) samples.In this study, 980 RNAs and 80 proteins were measured at subcellular resolution in FFPE cultured cell pellets, as well as FFPE tissues from biobanked samples of non-small cell lung cancer (NSCLC) and breast cancer. Cross-platform analysis using 16 cancer cell lines validated high-correlation (R2 ∼0.77) and high sensitivity (∼1.44 FPKM/TPM; roughly 1 to 2 copies of RNA per cell) when compared to RNA-seq. Real-world archived NSCLC FFPE tumor sections revealed greater than 94% cell detection efficiency for RNA, despite the low RNA quality QV200 20% to the medium quality 65%. The accuracy of protein expression measurements was independent of the level of multiplexing, as demonstrated by the linear behavior of nested multiplexing panels (R2 > 0.9). At 980-plex RNA detection, data analysis allowed identification of over 18 distinct cell types, at least 10 unique tumor microenvironment neighborhoods, and over 100 pairwise ligand-receptor interactions. Data from 8 NSCLC samples comprising over 800,000 single cells and ∼260 million transcripts are released into the public domain (www.nanostring.com) to allow for extended data analysis by the entire spatial biology research community.