In this white paper, experts from the Digital Pathology Association (DPA) define terminology and concepts in the emerging field of computational pathology, with a focus on its application to histology images analyzed together with their associated patient data to extract information. This review offers a historical perspective and describes the potential clinical benefits from research and applications in this field, as well as significant obstacles to adoption. Best practices for implementing computational pathology workflows are presented. These include infrastructure considerations, acquisition of training data, quality assessments, as well as regulatory, ethical, and cyber‐security concerns. Recommendations are provided for regulators, vendors, and computational pathology practitioners in order to facilitate progress in the field. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
The advent of whole-slide imaging in digital pathology has brought about the advancement of computer-aided examination of tissue via digital image analysis. Digitized slides can now be easily annotated and analyzed via a variety of algorithms. This study reviews the fundamentals of tissue image analysis and aims to provide pathologists with basic information regarding the features, applications, and general workflow of these new tools. The review gives an overview of the basic categories of software solutions available, potential analysis strategies, technical considerations, and general algorithm readouts. Advantages and limitations of tissue image analysis are discussed, and emerging concepts, such as artificial intelligence and machine learning, are introduced. Finally, examples of how digital image analysis tools are currently being used in diagnostic laboratories, translational research, and drug development are discussed.
Molecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution across tissues, and tissue-specific variation in gene expression. Using multiple tissues from a single donor enabled identification of the clonal distribution of T cells between tissues, identification of the tissue-specific mutation rate in B cells, and analysis of the cell cycle state and proliferative potential of shared cell types across tissues. Cell type–specific RNA splicing was discovered and analyzed across tissues within an individual.
Spatial transcriptomics extends single-cell RNA sequencing (scRNA-seq) by providing spatial context for cell type identification and analysis. Imaging-based spatial technologies such as multiplexed error-robust fluorescence in situ hybridization (MERFISH) can achieve single-cell resolution, directly mapping single-cell identities to spatial positions. MERFISH produces a different data type than scRNA-seq, and a technical comparison between the two modalities is necessary to ascertain how to best integrate them. We performed MERFISH on the mouse liver and kidney and compared the resulting bulk and single-cell RNA statistics with those from the Tabula Muris Senis cell atlas and from two Visium datasets. MERFISH quantitatively reproduced the bulk RNA-seq and scRNA-seq results with improvements in overall dropout rates and sensitivity. Finally, we found that MERFISH independently resolved distinct cell types and spatial structure in both the liver and kidney. Computational integration with the Tabula Muris Senis atlas did not enhance these results. We conclude that MERFISH provides a quantitatively comparable method for single-cell gene expression and can identify cell types without the need for computational integration with scRNA-seq atlases.
Spatial transcriptomics extends single cell RNA sequencing (scRNA-seq) technologies by providing spatial context for cell type identification and analysis. In particular, imaging-based spatial technologies such as Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH) can achieve single-cell resolution, allowing for the direct mapping of single cell identities to spatial positions. Nevertheless, because MERFISH produces an intrinsically different data type than scRNA-seq methods, a technical comparison between the two modalities is necessary to ascertain how best to integrate them. Here, we used the Vizgen MERSCOPE platform to perform MERFISH on mouse liver and kidney tissues and compared the resulting bulk and single-cell RNA statistics with those from the existing Tabula Muris Senis cell atlas. We found that MERFISH produced measurements that quantitatively reproduced the bulk RNA-seq and scRNA-seq results, with some minor differences in overall gene dropout rates and single-cell transcript count statistics. Finally, we explored the ability of MERFISH to identify cell types, and found that it could independently resolve distinct cell types and spatial structure in both liver and kidney. Computational integration with the Tabula Muris Senis atlas using scVI and scANVI did not noticeably enhance these results. We conclude that compared to scRNA-seq, MERFISH provides a quantitatively comparable method for measuring single-cell gene expression, and that efficient gene panel design allows for robust identification of cell types with intact spatial information without the need for computational integration with scRNA-seq reference atlases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.