This study explored the impact of two differing warm-up protocols (involving either resistance exercises or plyometric exercises) on running economy (RE) in healthy recreationally active participants. Twelve healthy university students [three males, nine females, age 20 ± 2 years, maximal oxygen uptake (38.4 ± 6.4 ml min −1 kg −1)] who performed less than 5 h per week of endurance exercise volunteered to participant in this study. All participants completed three different warm-up protocols (control, plyometric, and resistance warm-up) in a counterbalanced crossover design with trials separated by 48 h, using a Latin-square arrangement. Dependent variables measured in this study were RE at four running velocities (7, 8, 9, and 10 km h −1), maximal oxygen uptake; heart rate; respiratory exchange rate; expired ventilation; perceived race readiness; rating of perceived exertion, time to exhaustion and leg stiffness. The primary finding of this study was that the plyometric warm-up improved RE compared to the control warm-up (6.2% at 7 km h −1 , ES = 0.355, 9.1% at 8 km h −1 , ES = 0.513, 4.5% at 9 km h −1 , ES = 0.346, and 4.4% at 10 km h −1 , ES = 0.463). There was no statistically significant difference in VO 2 between control and resistance warm-up conditions at any velocity. There were also no statistically significant differences between conditions in other metabolic and pulmonary gas exchange variables; time to exhaustion; perceived race readiness and maximal oxygen uptake. However, leg stiffness increased by 20% (P = 0.039, ES = 0.90) following the plyometric warm-up and was correlated with the improved RE at a velocity of 8 km h −1 (r = 0.475, P = 0.041). No significant differences in RE were found between the control and resistance warm-up protocols. In comparison with the control warm-up protocol, an acute plyometric warm-up protocol can improve RE in healthy adults.