High-resistance strength training (HRST) is one of the most widely practiced forms of physical activity, which is used to enhance athletic performance, augment musculo-skeletal health and alter body aesthetics. Chronic exposure to this type of activity produces marked increases in muscular strength, which are attributed to a range of neurological and morphological adaptations. This review assesses the evidence for these adaptations, their interplay and contribution to enhanced strength and the methodologies employed. The primary morphological adaptations involve an increase in the cross-sectional area of the whole muscle and individual muscle fibres, which is due to an increase in myofibrillar size and number. Satellite cells are activated in the very early stages of training; their proliferation and later fusion with existing fibres appears to be intimately involved in the hypertrophy response. Other possible morphological adaptations include hyperplasia, changes in fibre type, muscle architecture, myofilament density and the structure of connective tissue and tendons. Indirect evidence for neurological adaptations, which encompasses learning and coordination, comes from the specificity of the training adaptation, transfer of unilateral training to the contralateral limb and imagined contractions. The apparent rise in whole-muscle specific tension has been primarily used as evidence for neurological adaptations; however, morphological factors (e.g. preferential hypertrophy of type 2 fibres, increased angle of fibre pennation, increase in radiological density) are also likely to contribute to this phenomenon. Changes in inter-muscular coordination appear critical. Adaptations in agonist muscle activation, as assessed by electromyography, tetanic stimulation and the twitch interpolation technique, suggest small, but significant increases. Enhanced firing frequency and spinal reflexes most likely explain this improvement, although there is contrary evidence suggesting no change in cortical or corticospinal excitability. The gains in strength with HRST are undoubtedly due to a wide combination of neurological and morphological factors. Whilst the neurological factors may make their greatest contribution during the early stages of a training programme, hypertrophic processes also commence at the onset of training.
This study assessed the integrative neural and contractile determinants of human knee extension explosive force production. Forty untrained participants performed voluntary and involuntary (supramaximally evoked twitches and octets - eight pulses at 300 Hz that elicit the maximum possible rate of force development) explosive isometric contractions of the knee extensors. Explosive force (F0-150 ms) and sequential rate of force development (RFD, 50-ms epochs) were measured. Surface electromyography (EMG) amplitude was recorded (superficial quadriceps and hamstrings, 50-ms epochs) and normalized (quadriceps to Mmax, hamstrings to EMGmax). Maximum voluntary force (MVF) was also assessed. Multiple linear regressions assessed the significant neural and contractile determinants of absolute and relative (%MVF) explosive force and sequential RFD. Explosive force production exhibited substantial interindividual variability, particularly during the early phase of contraction [F50, 13-fold (absolute); 7.5-fold (relative)]. Multiple regression explained 59-93% (absolute) and 35-60% (relative) of the variance in explosive force production. The primary determinants of explosive force changed during the contraction (F0-50, quadriceps EMG and Twitch F; RFD50-100, Octet RFD0-50; F100-150, MVF). In conclusion, explosive force production was largely explained by predictor neural and contractile variables, but the specific determinants changed during the phase of contraction.
Key pointsr We propose and validate a method for accurately identifying the activity of populations of motor neurons during contractions at maximal rate of force development in humans.r The behaviour of the motor neuron pool during rapid voluntary contractions in humans is presented.r We show with this approach that the motor neuron recruitment speed and maximal motor unit discharge rate largely explains the individual ability in generating rapid force contractions.r The results also indicate that the synaptic inputs received by the motor neurons before force is generated dictate human potential to generate force rapidly.r This is the first characterization of the discharge behaviour of a representative sample of human motor neurons during rapid contractions.Abstract During rapid contractions, motor neurons are recruited in a short burst and begin to discharge at high frequencies (up to >200 Hz). In the present study, we investigated the behaviour of relatively large populations of motor neurons during rapid (explosive) contractions in humans, applying a new approach to accurately identify motor neuron activity simultaneous to measuring the rate of force development. The activity of spinal motor neurons was assessed by high-density electromyographic decomposition from the tibialis anterior muscle of 20 men during isometric explosive contractions. The speed of motor neuron recruitment and the instantaneous motor unit discharge rate were analysed as a function of the impulse (the time-force integral) and the maximal rate of force development. The peak of motor unit discharge rate occurred before force Alessandro Del Vecchio is a research associate at the Department of Bioengineering, Imperial College London. He started his studies at the University of Parma with a degree in Human Movement Sciences and an MSc in Exercise Physiology from Loughborough University. Successively, he obtained a PhD from the University of Rome 'Foro Italico' focusing on the neural control of muscles. He is interested in the organization of neural networks determining movement and how to improve these networks in healthy and pathological conditions with the use of neurotechnology. Most of his work is based on recordings of motor unit activity during voluntary contractions.A. Del Vecchio and others J Physiol 597.9 generation and discharge rates decreased thereafter. The maximal motor unit discharge rate was associated with the explosive force variables, at the whole population level (r 2 = 0.71 ± 0.12; P < 0.001). Moreover, the peak motor unit discharge and maximal rate of force variables were correlated with an estimate of the supraspinal drive, which was measured as the speed of motor unit recruitment before the generation of afferent feedback (P < 0.05). We show for the first time the full association between the effective neural drive to the muscle and human maximal rate of force development. The results obtained in the present study indicate that the variability in the maximal contractile explosive force of the human tibialis anterior m...
The differences in voluntary normalized RFD between athletes and controls were explained by agonist muscle neural activation and not by the similar intrinsic contractile properties of the groups.
On a group basis, relative s-IgA determined a substantial proportion of the variability in weekly URI incidence. The typical decline in an individual's relative s-IgA over the 3 wk before a URI appears to precede and contribute to URI risk, with the magnitude of the decrease related to the risk of URI, independent of the absolute s-IgA concentration. These findings have important implications for athletes and coaches in identifying periods of high URI risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.