The evaluation of rate of force development during rapid contractions has recently become quite popular for characterising explosive strength of athletes, elderly individuals and patients. The main aims of this narrative review are to describe the neuromuscular determinants of rate of force development and to discuss various methodological considerations inherent to its evaluation for research and clinical purposes. Rate of force development (1) seems to be mainly determined by the capacity to produce maximal voluntary activation in the early phase of an explosive contraction (first 50–75 ms), particularly as a result of increased motor unit discharge rate; (2) can be improved by both explosive-type and heavy-resistance strength training in different subject populations, mainly through an improvement in rapid muscle activation; (3) is quite difficult to evaluate in a valid and reliable way. Therefore, we provide evidence-based practical recommendations for rational quantification of rate of force development in both laboratory and clinical settings.
Post-activation potentiation (PAP) is induced by a voluntary conditioning contraction (CC), performed typically at a maximal or near-maximal intensity, and has consistently been shown to increase both peak force and rate of force development during subsequent twitch contractions. The proposed mechanisms underlying PAP are associated with phosphorylation of myosin regulatory light chains, increased recruitment of higher order motor units, and a possible change in pennation angle. If PAP could be induced by a CC in humans, and utilized during a subsequent explosive activity (e.g. jump or sprint), it could potentially enhance mechanical power and thus performance and/or the training stimulus of that activity. However, the CC might also induce fatigue, and it is the balance between PAP and fatigue that will determine the net effect on performance of a subsequent explosive activity. The PAP-fatigue relationship is affected by several variables including CC volume and intensity, recovery period following the CC, type of CC, type of subsequent activity, and subject characteristics. These variables have not been standardized across past research, and as a result, evidence of the effects of CC on performance of subsequent explosive activities is equivocal. In order to better inform and direct future research on this topic, this article will highlight and discuss the key variables that may be responsible for the contrasting results observed in the current literature. Future research should aim to better understand the effect of different conditions on the interaction between PAP and fatigue, with an aim of establishing the specific application (if any) of PAP to sport.
The differences in voluntary normalized RFD between athletes and controls were explained by agonist muscle neural activation and not by the similar intrinsic contractile properties of the groups.
Training specificity is considered important for strength training, although the functional and underpinning physiological adaptations to different types of training, including brief explosive contractions, are poorly understood. This study compared the effects of 12 wk of explosive-contraction (ECT, n = 13) vs. sustained-contraction (SCT, n = 16) strength training vs. control (n = 14) on the functional, neural, hypertrophic, and intrinsic contractile characteristics of healthy young men. Training involved 40 isometric knee extension repetitions (3 times/wk): contracting as fast and hard as possible for ∼1 s (ECT) or gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT). Torque and electromyography during maximum and explosive contractions, torque during evoked octet contractions, and total quadriceps muscle volume (QUADSVOL) were quantified pre and post training. MVT increased more after SCT than ECT [23 vs. 17%; effect size (ES) = 0.69], with similar increases in neural drive, but greater QUADSVOL changes after SCT (8.1 vs. 2.6%; ES = 0.74). ECT improved explosive torque at all time points (17-34%; 0.54 ≤ ES ≤ 0.76) because of increased neural drive (17-28%), whereas only late-phase explosive torque (150 ms, 12%; ES = 1.48) and corresponding neural drive (18%) increased after SCT. Changes in evoked torque indicated slowing of the contractile properties of the muscle-tendon unit after both training interventions. These results showed training-specific functional changes that appeared to be due to distinct neural and hypertrophic adaptations. ECT produced a wider range of functional adaptations than SCT, and given the lesser demands of ECT, this type of training provides a highly efficient means of increasing function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.