We prove the existence and uniqueness of the solution of the problem of the minimum norm function ∥ · ∥ ∞ with a given set of initial coefficients of the trigonometric Fourier series c j , j = 0 , 1 , … , 2 n . Then, we prove the existence and uniqueness of the solution of the nonnegative function problem with a given set of coefficients of the trigonometric Fourier series c j , j = 1 , … , 2 n for the norm ∥ · ∥ 1 .