Molecular profiling of personal cancer genomes, and the identification of actionable vulnerabilities and drug-response biomarkers, are the basis of precision oncology. Tumors often present several driver alterations that might be connected by cross-talk and feedback mechanisms, making it difficult to mark single oncogenic variations as reliable predictors of therapeutic outcome. In the current work, we uncover and exploit driver alteration cooccurrence patterns from a recently published in vivo screening in patient-derived xenografts (PDXs), including 187 tumors and 53 drugs. For each treatment, we compare the mutational profiles of sensitive and resistant PDXs to statistically define Driver Co-Occurrence (DCO) networks, which capture both genomic structure and putative oncogenic synergy. We then use the DCO networks to train classifiers that can prioritize, among the available options, the best possible treatment for each tumor based on its oncogenomic profile. In a cross-validation setting, our drug-response models are able to correctly predict 66% of sensitive and 77% of resistant drug-tumor pairs, based on tumor growth variation. Perhaps more interesting, our models are applicable to several tumor types and drug classes for which no biomarker has yet been described. Additionally, we experimentally Grant Support L.M. is a recipient of an FPI fellowship. P.A. acknowledges the support of the Spanish Ministerio de Economía y Competitividad (BIO2016-77038-R) and the European Research Council (SysPharmAD: 614944). V.S. is recipient of a Miguel Servet grant from ISCIII (CP14/00228) and receives funds from AGAUR (2017 SGR 540). The PDX program is supported by a GHD-Pink (FERO foundation) grant to V.S.. A.G.-O. and M.P. received a FI-AGAUR and a Juan de la Cierva (MJCI-2015-25412) fellowship, respectively.