For the past decades, several bioadhesives have been developed to replace conventional wound closure medical tools such as sutures, staples, and clips. The bioadhesives are easy to use and can minimize tissue damage. They are designed to provide strong adhesion with stable mechanical support on tissue surfaces. However, this monofunctionality of the bioadhesives hinders their practical applications. In particular, a bioadhesive can lose its intended function under harsh tissue environments or delay tissue regeneration during wound healing. Based on several natural and synthetic biomaterials, functional bioadhesives have been developed to overcome the aforementioned limitations. The functional bioadhesives are designed to have specific characteristics such as antimicrobial, cell infiltrative, stimuli-responsive, electrically conductive, and self-healing to ensure stability under harsh tissue conditions, facilitate tissue regeneration, and effectively monitor biosignals. Herein, we thoroughly review the functional bioadhesives from their fundamental background to recent progress with their practical applications for the enhancement of tissue healing and effective biosignal sensing.Furthermore, the future perspectives on the applications of functional bioadhesives and current challenges in their commercialization are also discussed.