Inspired by functional systems in nature, chemists have created a number of intriguing and useful molecular systems from porphyrins and their metal complexes. Of the synthetic porphyrin derivatives developed to date, strapped porphyrins are unique because they have three-dimensional architectures based on a built-in two-dimensional porphyrin molecule. Consequently, the structures of strapped porphyrins can be customized through detailed molecular design, thereby allowing the synthesis of sophisticated molecular systems. Herein, we describe strapped porphyrin-based polymeric systems. In particular, we focus on molecular design concepts that are established in combination with photophysical, electronic and mechanical properties of polymeric materials.
INTRODUCTIONPorphyrins and their derivatives have important roles in nature and have served as models for chemists to design functional molecular systems. Examples of natural porphyrin-based systems include the photosynthetic reaction center and heme proteins. By mimicking the principles that underpin these systems (that is, by taking a biomimetic approach), various photofunctional systems, catalysts and sensors have been developed. This area of research has witnessed extensive developments, 1,2 and a complete review of the background is beyond the scope of this paper.From a molecular design perspective, strapped porphyrins (including those categorized as basket-handle porphyrins) are attractive building blocks because of their unique structures. 3-5 Strapped porphyrins are reminiscent of the tertiary structure of heme proteins in that the porphyrin molecule (that is, the coenzyme) is encapsulated within a three-dimensional (3D) framework (that is, the apoenzyme) (see Figure 1a). In fact, a number of strapped porphyrin derivatives have been developed in the field of biomimetic chemistry for the purpose of realizing artificial enzymes. These studies have suggested that not only the electronic characteristics of the porphyrins and their metal complexes but also their spatial molecular designs, including the 'apoenzyme' framework, are of significance for achieving sophisticated functionalities. For example, the selectivity, reactivity and stability of metalloporphyrin-based catalysts have been significantly improved by designing them such that they possess a 3D architecture, thereby optimizing the cooperative action between the porphyrin molecule and the strap moieties. 3-5 Considering these successful examples, we envisaged that strapped porphyrins would also have significant applicability in the fields of polymer chemistry and materials science, leading to the synthesis of novel functional materials.