A dual-plasma codeposition system capable of synthesizing thin films of mixed-phase materials consisting of nanoparticles of one type of material embedded within a thin film semiconductor or insulator matrix is described. This codeposition process is illustrated by the growth of hydrogenated amorphous silicon ͑a-Si:H͒ films containing silicon nanocrystalline inclusions ͑a/nc-Si:H͒. A capacitively coupled flow-through plasma reactor is used to generate silicon nanocrystallites of diameter 5 nm, which are entrained by a carrier gas and introduced into a capacitively coupled plasma enhanced chemical vapor deposition reactor with parallel plate electrodes, in which a-Si:H is synthesized. The structural and electronic properties of these mixed-phase a/nc-Si:H films are investigated as a function of the silicon nanocrystal concentration. At a moderate concentration ͑crystalline fraction 0.02-0.04͒ of silicon nanocrystallites, the dark conductivity is enhanced by up to several orders of magnitude compared to mixed-phase films with either lower or higher densities of nanoparticle inclusions. These results are interpreted in terms of a model whereby in films with a low nanocrystal concentration, conduction is influenced by charges donated into the a-Si:H film by the inclusions, while at high nanocrystal densities electronic transport is affected by increased disorder introduced by the nanoparticles.