Oxford Handbooks Online 2012
DOI: 10.1093/oxfordhb/9780195392777.013.0021
|View full text |Cite
|
Sign up to set email alerts
|

Conflicts with Multiple Battlefields

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

1
48
0

Year Published

2012
2012
2017
2017

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 72 publications
(49 citation statements)
references
References 61 publications
1
48
0
Order By: Relevance
“…After Second World War Borel's model takes the name "Colonel Blotto game" brought into the scope of game theory the field of allocation games or a 'winner-takesall' conflicts with applications in the areas such as R&D races, presidential elections, auctions, tournaments (for an overview of research works on allocation games, see [2]). Hart [3] considered a discrete version of the Blotto game, called Colonel Lotto game where the battlefields are assumed indistinguishable.…”
Section: Introductionmentioning
confidence: 99%
See 4 more Smart Citations
“…After Second World War Borel's model takes the name "Colonel Blotto game" brought into the scope of game theory the field of allocation games or a 'winner-takesall' conflicts with applications in the areas such as R&D races, presidential elections, auctions, tournaments (for an overview of research works on allocation games, see [2]). Hart [3] considered a discrete version of the Blotto game, called Colonel Lotto game where the battlefields are assumed indistinguishable.…”
Section: Introductionmentioning
confidence: 99%
“…For Colonel Lotto game, in accordance with Hart [6], payoff function H L is defined as H L (D,E ) = (1/m 2 ) ¦ i ¦ j sign(D i -E j ). In [3] it was shown that Colonel Blotto game (n, m) and the Colonel Lotto game (n, m) have the same value.…”
Section: Introductionmentioning
confidence: 99%
See 3 more Smart Citations