2011
DOI: 10.1088/1751-8113/44/33/335203
|View full text |Cite
|
Sign up to set email alerts
|

Conformal Galilei groups, Veronese curves and Newton–Hooke spacetimes

Abstract: Finite-dimensional nonrelativistic conformal Lie algebras spanned by polynomial vector fields of Galilei spacetime arise if the dynamical exponent is z = 2/N with N = 1, 2, . . . . Their underlying group structure and matrix representation are constructed (up to a covering) by means of the Veronese map of degree N . Suitable quotients of the conformal Galilei groups provide us with Newton-Hooke nonrelativistic spacetimes with a quantized reduced negative cosmological constant λ = −N .

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
93
0
2

Year Published

2011
2011
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 87 publications
(95 citation statements)
references
References 68 publications
(174 reference statements)
0
93
0
2
Order By: Relevance
“…(B.31) and (B.32) make use of the properties of finite dimensional irreducible representations of SL(2, R). In fact, finitedimensional irreducible representations of SL(2, R) are classified by natural number N and they matrices are of the form (see, e.g., [14]) …”
Section: B Appendixmentioning
confidence: 99%
“…(B.31) and (B.32) make use of the properties of finite dimensional irreducible representations of SL(2, R). In fact, finitedimensional irreducible representations of SL(2, R) are classified by natural number N and they matrices are of the form (see, e.g., [14]) …”
Section: B Appendixmentioning
confidence: 99%
“…Кро-ме того, при a 0 = 0 преобразование (51) совпадает с (35), а при a = 0, a 0 = cτ tg α -с (25). Возведя равенство (51) в квадрат, получаем …”
Section: комбинированная деформация алгебры галилеяunclassified
“…Проведенный анализ показывает, что дискретное (в обычном галилее-вом пространстве-времени) преобразование "четности" (отражение пространствен-ных координат) содержится в непрерывной группе SL(2, R). Таким образом, ясно, что построенные выше преобразования симметрии реализуются не на обычном нере-лятивистском пространстве-времени R d ⊗ R, а скорее на пространстве Мёбиуса [25].…”
unclassified
“…The free higher-derivative particle 13,14 and the Pais-Uhlenbeck (PU) oscillator 15 can be viewed as higher-derivative analogues of the free particle and the harmonic oscillator, re-spectively. Recently, symmetries of these higher-derivative models have been extensively studied 13,14,[16][17][18][19][20][21][22][23] .…”
Section: Introductionmentioning
confidence: 99%
“…Recently, symmetries of these higher-derivative models have been extensively studied 13,14,[16][17][18][19][20][21][22][23] . In particular it has been shown that the l-conformal Galilei group is the maximal symmetry group of the free (2l + 1)-order particle 14 .…”
Section: Introductionmentioning
confidence: 99%