Our aim was to compare the repertoires of conformers formed by the model zwitterionic peptides AA and AAA in aqueous solution with the conformational profiles of a range of their peptide isosteres, so as to facilitate selection of isosteres for synthesis and testing as biologically stable surrogates of bioactive di- and tripeptides. Comparisons were based upon the results of conformational analysis using a random search approach implemented within the SYBYL molecular modelling package, using zwitterionic molecules, simulated aqueous solvation using a dielectric constant of 80 and allowing all torsions to vary. For each compound, individual conformers were grouped on the basis of specific combinations of psi, phi and omega torsions and, using their energies, the aggregated percentage for each group was calculated using a Boltzmann distribution and displayed using a 3D pseudo Ramachandran plot relating percentage conformer to psi and phi torsions. Retroamide, N-methylamide and thioamide isosteres showed the best match to natural peptides and to the molecular recognition parameters defined for substrates of peptide transporters. The results should aid rational design of therapeutic agents in various areas, e.g. oral delivery of drugs by peptide transporters and of peptidase inhibitors. This approach may usefully be applied to various biochemical and pharmaceutical topics.