The homopolymerization of N‐vinylcarbazole was performed with atom transfer radical polymerization (ATRP) with Cu(I)/Cu(II)/2,2′‐bipyridine (bpy) as the catalyst system at 90 °C in toluene. N‐2‐Bromoethyl carbazole was used as the initiator, and the optimized ratio of Cu(I) to Cu(II) was found to be 1/0.3. The resulting homopolymer, poly(N‐vinylcarbazole) (PVK), was formed after a monomer conversion of 76% in 20 h. The molecular weight as well as the polydispersity index (PDI) showed a linear relation with the conversion, which showed control over the polymerization. A semilogarithmic plot of the monomer conversion with time was linear, indicating the presence of constant active species throughout the polymerization. The initiator efficiency and the effect of the variation of the initiator concentration on the polymerization were studied. The effects of the addition of CuBr2, the variation of the catalyst concentration with respect to the initiator, and CuX (X = Br or Cl) on the kinetics of homopolymerization were determined. With Cu(0)/CuBr2/bpy as the catalyst, faster polymerization was observed. For a chain‐extension experiments, PVK (number‐average molecular weight = 1900; PDI = 1.24) was used as a macroinitiator for the ATRP of methyl methacrylate, and this resulted in the formation of a block copolymer that gave a monomodal curve in gel permeation chromatography. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1745–1757, 2006