2009
DOI: 10.1007/s12045-009-0113-6
|View full text |Cite
|
Sign up to set email alerts
|

Congruent numbers, elliptic curves, and the passage from the local to the global

Abstract: KeywordsCongruent numbers, elliptic curves, Hasse principle, Birch and Swinnerton-Dyer conjecture, Shafarevich-Tate conjecture. Chandan Singh Dalawatwas born in Bhitwara and now lives in Chhatnag. He would like to see more young people from diverse backgrounds take up mathematics and hopes T h e a n c ie n t u n so lv ed p ro b le m o f co n g ru e n t n u mbe r s h a s bee n red u ced to o n e o f th e m a jo r q u e stio n s o f co n te m p o ra ry a rith m e tic : th e¯n ite n e ss o f th e n u m be r o f c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 18 publications
0
2
0
Order By: Relevance
“…The result that is almost the "poster-child" for congruent numbers is Don Zagier's solution for N = 157, which is always given to show the sizes of the numbers involved. Nobody describes how it was computed and, in fact, some get it wrong, ascribing the solution to the use of Heegner points -a subject on which Zagier was one of the first experts, see Dalawat [6]. In a reply, on 10 Nov. 2015, to a question on the web-site MathOverflow, Noam…”
Section: A Special Descentmentioning
confidence: 99%
See 1 more Smart Citation
“…The result that is almost the "poster-child" for congruent numbers is Don Zagier's solution for N = 157, which is always given to show the sizes of the numbers involved. Nobody describes how it was computed and, in fact, some get it wrong, ascribing the solution to the use of Heegner points -a subject on which Zagier was one of the first experts, see Dalawat [6]. In a reply, on 10 Nov. 2015, to a question on the web-site MathOverflow, Noam…”
Section: A Special Descentmentioning
confidence: 99%
“…The most well-known such triangle is probably the (3,4,5) triangle, introduced at school. It has area 6. A natural question is what other integers can occur as the area of a right-angled triangle with integer sides?…”
Section: Introductionmentioning
confidence: 99%