We compute the Chow group of 0-cycles on a rational surface defined over a finite extension K of the field Q p of p-adic numbers (p a prime) when it is split by an unramified extension of K. We use intersection theory to define a specialisation map so we need to assume that the surface admits a regular proper integral model. A family of examples is worked out to illustrate the method.
KeywordsCongruent numbers, elliptic curves, Hasse principle, Birch and Swinnerton-Dyer conjecture, Shafarevich-Tate conjecture.
Chandan Singh Dalawatwas born in Bhitwara and now lives in Chhatnag. He would like to see more young people from diverse backgrounds take up mathematics and hopes T h e a n c ie n t u n so lv ed p ro b le m o f co n g ru e n t n u mbe r s h a s bee n red u ced to o n e o f th e m a jo r q u e stio n s o f co n te m p o ra ry a rith m e tic : th e¯n ite n e ss o f th e n u m be r o f c u rv e s o v e r Q w h ich beco m e iso m o rp h ic a t e v e ry p la ce to a g iv e n c u rv e . W e g iv e a n e le m e n ta ry in tro d u c tio n to co n g ru e n t n u m be rs a n d th e ir co n jec tu ra l c h a ra c te risa tio n , d isc u ss lo ca l-to -g lo ba l issu e s lea d in g to th e¯n iten e ss p ro b le m , a n d list a fe w re su lts a n d co n jectu re s in th e a rith m e tic th eo r y o f ellip tic c u rv e s.T h e a rea ® o f a rig h t tria n g le w ith sid es a ;b;c (so th a t a 2 + b 2 = c 2 ) is g iv en b y 2 ® = a b. If a ;b;c a re ra tion a l, th en so is ® . C on v ersely, w h ich ra tio n a l n u m b ers ® a rise a s th e a rea of a ra tion a l righ t tria n gle a ;b;c ? T h is p ro b lem o f ch a ra cterisin g \con g ru en t n u m b ers" { a rea s of ra tio n a l righ t tria n g les { is p erh a p s th e old est u n so lv ed p ro b lem in a ll o f M a th em a tics. It d a tes b a ck to m o re th a n a th o u sa n d yea rs a n d h a s b een va rio u sly a ttrib u ted to th e A ra b s, th e C h in ese, a n d th e In d ia n s.T h ree ex cellen t a cco u n ts o f th e p rob lem a re ava ila b le o n th e W eb : R ight trian gles an d elliptic cu rves b y K a rl R u b in , L e problμ em e des nom bres con gru en ts b y P ierre C olm ez, w h ich a lso a p p ea rs in th e O ctob er 2 0 0 6 issu e of th e G azette des m ath ¶ em aticien s, a n d F ra n z L em m erm eyer's tra n sla tio n C on gru en t n u m bers, elliptic cu rves, an d m odu la r form s of a n a rticle in F ren ch b y G u y H enn ia rt. A m o re elem en ta ry in tro d u ctio n is p rov id ed b y th e n o tes of a lectu re in H on g K o n g by Joh n C o a tes, w h ich h ave a p p ea red in th e A u g u st 2 0 0 5 issu e of th e Q u aterly jo u rn al of pu re an d applied m athem atics. A
For a local field F with finite residue field of characteristic p, we describe completely the structure of the filtered) and G = Gal(K|F). As an application, we give an elementary proof of Serre's mass formula in degree p. We also determine the compositum C of all degree-p separable extensions with solvable galoisian closure over an arbitrary base field, and show that C is K( p E q −c(E) = n.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.