Experimental realization of three-dimensional spatiotemporal solitons, which were proposed several decades ago, is still considered a "grand challenge" in nonlinear science. Here, we present experimental observation of 3D optical spatiotemporal pulse-train solitons. A spatially bright temporally dark pulse-train beam is trapped in a bulk medium that supports two types of nonlinearities: slowly responding saturable selffocusing that collectively self-trap the beam in the transverse directions and fast self-phase modulation that self-localizes each dark notch temporally (longitudinally). This work opens the possibility for experimental investigations of various soliton phenomena, including soliton interaction in 3D, formation of multimode spatiotemporal solitons, and envisioning new entities like partially coherent spatiotemporal solitons.