Sickle cell disease (SCD) is one of the most common genetic disorders worldwide. It is caused by a point mutation that changes glutamic acid (Glu6) to valine (Val6) in the β chain of hemoglobin. Vaso-occlusion is the most well-known problem associated with SCD. Despite recent advances in understanding the disease at the molecular level, few therapeutic strategies are available. Hydroxyurea is the only drug currently approved by the U.S. Food and Drug Administration for the disease, and it has serious adverse effects and lack of efficacy in some patients. However, new therapeutic approaches are under investigation in the hope of discovering new drugs to treat SCD.These include agents that: a) increase nitric oxide bioavailability; b) modify the rheological properties of the blood; c) bind covalently to hemoglobin; d) prevent hemoglobin dehydration; e) reduce iron overload; and f) induce the expression of gamma globin and fetal hemoglobin. In this chapter, we discuss the current treatment of SCD and the advances made in medicinal chemistry to find new drugs to treat this neglected hematological disease.