Desferrioxamine B (DFOB) conjugates with adamantane-1-carboxylic acid, 3-hydroxyadamantane-1-carboxylic acid, 3,5-dimethyladamantane-1-carboxylic acid, adamantane-1-acetic acid, 4-methylphenoxyacetic acid, 3-hydroxy-2-methyl-4-oxo-1-pyridineacetic acid (N-acetic acid derivative of deferiprone), or 4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]benzoic acid (deferasirox) were prepared and the integrity of Fe(III) binding of the compounds was established from electrospray ionization mass spectrometry and RP-HPLC measurements. The extent of intracellular (59)Fe mobilized by the DFOB-3,5-dimethyladamantane-1-carboxylic acid adduct was 3-fold greater than DFOB alone, and the IC(50) value of this adduct was 6- or 15-fold greater than DFOB in two different cell types. The relationship between logP and (59)Fe mobilization for the DFOB conjugates showed that maximal mobilization of intracellular (59)Fe occurred at a logP value approximately 2.3. This parameter, rather than the affinity for Fe(III), appears to influence the extent of intracellular (59)Fe mobilization. The low toxicity-high Fe mobilization efficacy of selected adamantane-based DFOB conjugates underscores the potential of these compounds to treat iron overload disease in patients with transfusional-dependent disorders such as beta-thalassemia.
Parkinson disease (PD) is a neurodegenerative disease characterized by death of dopaminergic neurons in the substantia nigra region of the brain. Iron content is also elevated in this region in PD and is implicated in the pathobiology of the disease. Desferrioxamine B (DFOB) is a high-affinity iron chelator and has shown efficacy in animal models of Parkinson disease. The high water solubility of DFOB, however, attenuates its ability to enter the brain. In this study, we have conjugated DFOB to derivatives of adamantane or the clinical iron chelator deferasirox to produce lipophilic compounds designed to increase the bioavailability of DFOB to brain cells. We found that the novel compounds are highly effective in preventing iron-mediated paraquat and hydrogen peroxide toxicity in neuronal-like BE2-M17 dopaminergic cells, primary neurons, and iron-loaded or glutathione-depleted primary astrocytes. The compounds also alleviated paraquat toxicity in BE2-M17 cells that express the PD-causing A30P mutation of α-synuclein. This protection was ∼66-fold more potent than DFOB alone and also more effective than other cell-permeative metal chelators, clioquinol and phenanthroline. These results demonstrate that increasing the bioavailability of DFOB through the conjugation of lipophilic fragments greatly enhances its protective capacity. These novel compounds have potential as therapeutics for the treatment of PD and other conditions of Fe dyshomeostasis.
Accumulating Mb (myoglobin) in the kidney following severe burns promotes oxidative damage and inflammation, which leads to acute renal failure. The potential for haem-iron to induce oxidative damage has prompted testing of iron chelators [e.g. DFOB (desferrioxamine B)] as renal protective agents. We compared the ability of DFOB and a DFOB-derivative {DFOB-AdAOH [DFOB-N-(3-hydroxyadamant-1-yl)carboxamide]} to protect renal epithelial cells from Mb insult. Loading kidney-tubule epithelial cells with dihydrorhodamine-123 before exposure to 100 μM Mb increased rhodamine-123 fluorescence relative to controls (absence of Mb), indicating increased oxidative stress. Extracellular Mb elicited a reorganization of the transferrin receptor as assessed by monitoring labelled transferrin uptake with flow cytometry and inverted fluorescence microscopy. Mb stimulated HO-1 (haem oxygenase-1), TNFα (tumour necrosis factor α), and both ICAM (intercellular adhesion molecule) and VCAM (vascular cell adhesion molecule) gene expression and inhibited epithelial monolayer permeability. Pre-treatment with DFOB or DFOB-AdAOH decreased Mb-mediated rhodamine-123 fluorescence, HO-1, ICAM and TNFα gene expression and restored monolayer permeability. MCP-1 (monocyte chemotactic protein 1) secretion increased in cells exposed to Mb-insult and this was abrogated by DFOB or DFOB-AdAOH. Cells treated with DFOB or DFOB-AdAOH alone showed no change in permeability, MCP-1 secretion or HO-1, TNFα, ICAM or VCAM gene expression. Similarly to DFOB, incubation of DFOB-AdAOH with Mb plus H2O2 yielded nitroxide radicals as detected by EPR spectroscopy, indicating a potential antioxidant activity in addition to metal chelation; Fe(III)-loaded DFOB-AdAOH showed no nitroxide radical formation. Overall, the chelators inhibited Mb-induced oxidative stress and inflammation and improved epithelial cell function. DFOB-AdAOH showed similar activity to DFOB, indicating that this novel low-toxicity chelator may protect the kidney after severe burns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.