Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
DisclaimerThis document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. AbstractA regular edge labeling of an irreducible triangulation G uniquely defines a rectangular dual of G. Rectangular duals find applications in various areas: as floor plans of electronic chips, in architectural designs, as rectangular cartograms, or as treemaps. An irreducible triangulation can have many regular edge labelings and hence many rectangular duals. Depending on the specific application different duals might be desirable. In this thesis we consider optimization problems on regular edge labelings and show how to find optimal or near-optimal ones for various quality criteria. We evaluate our optimization methods by applying them to generate high quality rectangular cartograms. Furthermore, we show how to efficiently enumerate the regular edge labelings of an irreducible triangulation. Since the running time of the enumeration algorithm depends on the number of regular edge labelings, we also consider the maximal number of regular edge labelings an irreducible triangulation can have. We show that every irreducible triangulation with n vertices has less than O(4.6807 n ) regular edge labelings and that there are irreducible triangulations with Ω(3.0426 n ) regular edge labelings.i
DisclaimerThis document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. AbstractA regular edge labeling of an irreducible triangulation G uniquely defines a rectangular dual of G. Rectangular duals find applications in various areas: as floor plans of electronic chips, in architectural designs, as rectangular cartograms, or as treemaps. An irreducible triangulation can have many regular edge labelings and hence many rectangular duals. Depending on the specific application different duals might be desirable. In this thesis we consider optimization problems on regular edge labelings and show how to find optimal or near-optimal ones for various quality criteria. We evaluate our optimization methods by applying them to generate high quality rectangular cartograms. Furthermore, we show how to efficiently enumerate the regular edge labelings of an irreducible triangulation. Since the running time of the enumeration algorithm depends on the number of regular edge labelings, we also consider the maximal number of regular edge labelings an irreducible triangulation can have. We show that every irreducible triangulation with n vertices has less than O(4.6807 n ) regular edge labelings and that there are irreducible triangulations with Ω(3.0426 n ) regular edge labelings.i
Road network analysis can require distance from points that are not on the network themselves. We study the algorithmic problem of connecting a point inside a face (region) of the road network to its boundary while minimizing the detour factor of that point to any point on the boundary of the face. We show that the optimal single connection (feed-link) can be computed in O(lambda_7(n) log n) time, where n is the number of vertices that bounds the face and lambda_7(n) is the slightly superlinear maximum length of a Davenport-Schinzel sequence of order 7 on n symbols. We also present approximation results for placing more feed-links, deal with the case that there are obstacles in the face of the road network that contains the point to be connected, and present various related results
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.