2015
DOI: 10.1002/hbm.22933
|View full text |Cite
|
Sign up to set email alerts
|

Connectivity‐based parcellation: Critique and implications

Abstract: Regional specialization and functional integration are often viewed as two fundamental principles of human brain organization. They are closely intertwined because each functionally specialized brain region is probably characterized by a distinct set of long-range connections. This notion has prompted the quickly developing family of connectivity-based parcellation (CBP) methods in neuroimaging research. CBP assumes that there is a latent structure of parcels in a region of interest (ROI). First, connectivity … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
313
0
4

Year Published

2016
2016
2021
2021

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 267 publications
(317 citation statements)
references
References 172 publications
(269 reference statements)
0
313
0
4
Order By: Relevance
“…Although this paper only aims at estimating the connections between nodes, we have also faced the problem of parcelling a whole brain into nodes in this study. This is because that there is yet no widely-accepted parcellation for functional connectivity inference [46,47] . Although it has been recommended to use data-driven approaches, such as high-dimensional independent component analysis (ICA), rather than gross structural atlas based parcellation that may not finely correspond to real functional boundaries in the data [48] , we chose the AAL atlas (which shows greater stability than other atlases tested [49] ), because of its simplicity and interpretability.…”
Section: Empirical Illustrationmentioning
confidence: 99%
“…Although this paper only aims at estimating the connections between nodes, we have also faced the problem of parcelling a whole brain into nodes in this study. This is because that there is yet no widely-accepted parcellation for functional connectivity inference [46,47] . Although it has been recommended to use data-driven approaches, such as high-dimensional independent component analysis (ICA), rather than gross structural atlas based parcellation that may not finely correspond to real functional boundaries in the data [48] , we chose the AAL atlas (which shows greater stability than other atlases tested [49] ), because of its simplicity and interpretability.…”
Section: Empirical Illustrationmentioning
confidence: 99%
“…Ключевыми для понимания организации высших мозговых функций являются два основных поло-жения -функциональная специализация и функцио-нальная интеграция различных отделов головного мозга [3,5,10,11]. В основе функциональной специализации лежит представление о ведущей роли определенных обла-стей головного мозга, преимущественно коры больших полушарий, в выполнении тех или иных когнитивных функций.…”
Section: структурно-функциональный подходunclassified
“…При этом следует учитывать тот факт, что в коре полушарий головного мозга выделяют от 50 до 200 разных зон, функциональная значимость которых является пред-метом проводимых исследований [12]. Эти зоны отлича-ются друг от друга по своей микроархитектонике (цито-, миело-и рецепторо-архитектонике), связям (как аффе-рентным и эфферентным) и функциям [11]. Функцио-нальная интеграция подразумевает наличие динамиче-ских связей между различными отделами головного моз-га, обеспечивающих осуществление когнитивных и дру-гих функций.…”
Section: структурно-функциональный подходunclassified
“…The cerebral cortex has been divided into functional cerebrocortical areas (Bzdok et al, 2015; Eickhoff, Laird, Fox, Bzdok, & Hensel, 2016; Eickhoff, Thirion, Varoquaux, & Bzdok, 2015; Finn et al, 2015; Genon et al, 2017; Jackson, Bajada, Rice, Cloutman, & Lambon Ralph, 2018; Jakobsen et al, 2018; Mars et al, 2011; Shen, Tokoglu, Papademetris, & Constable, 2013; Wang, Fan, et al, 2015; Wang, Yang, et al, 2015; Wang et al, 2017; Zhang & Li, 2012; Zhang et al, 2016). There are two major approaches for areal parcellation (Schaefer et al, 2017): Clustering analyses reveal cortical areas that represent the global cortical functional architecture well.…”
Section: Introductionmentioning
confidence: 99%