Producing enough food, fiber, and fuel, in this case, the second most important global crop called rice, remains a continuing challenge as global population increases and various production constraints ensue. Plant breeding scientists prefer using elite rice lines but also infuse new genetic resources into the parental genepool for desirable traits, such as resistance to pests and diseases, good flavor, and high nutritional quality on top of high-yielding potential. Prior research studies reveal the importance of germplasm resources including wild rice relatives as excellent sources of desirable traits in new crop breeds. Advances in molecular and genomics approaches (QTLs, GWAS, OMICs technologies) have identified and transferred genes, genomes, loci among other important genetic materials that are sought for. As knowledge builds up with these biotechniques, more rice genetic resources can be characterized at the molecular and systems levels for further utility in breeding better cultivars. Information generated from innovative approaches must be documented and processed as germplasm characterization data and must remain accessible at genebanks that exist centrally to conserve biodiversity. Development of germplasm information should be a collaborative effort of scientists who share similar interests in exploiting the valuable and novel genes within germplasm resources that are essential for crop improvement.