Significance
The envelope subunit gp41 is an attractive target for therapeutic intervention against HIV-1. Interfering with the interaction between the heptad-repeat regions of gp41 is a promising approach to inhibit HIV-1 fusion to the host cell membrane. Here, we present an alternative rational design and protein-engineering approach to produce highly stable single-chain proteins that accurately mimic the trimeric coiled-coil surface of the gp41 N-terminal heptad repeat. This approach has a strong potential for development to HIV-1 drugs, vaccines, or microbicides and could be extendable to the design of proteins interfering with other types of coiled-coil interactions.