The intraparietal sulcus (IPS) region is uniquely situated at the intersection of visual, somatosensory, and auditory association cortices, ideally located for processing of multisensory attention. We examined the internal architecture of the IPS region and its connectivity to other regions in the dorsal attention and cinguloinsular networks using maximal connectivity clustering. We show with resting state fMRI data from 58 healthy adolescent and young adult volunteers that points of maximal connectivity between the IPS and other regions in the dorsal attention and cinguloinsular networks are topographically organized, with at least seven maps of the IPS region in each hemisphere. Distinct clusters of the IPS exhibited differential connectivity to auditory, visual, somatosensory, and default mode networks, suggesting local specialization within the IPS region for different sensory modalities. In an independent task activation paradigm with 16 subjects, attention to different sensory modalities showed similar functional specialization within the left intraparietal sulcus region. The default mode network, in contrast, did not show a topographical relationship between regions in the network, but rather maximal connectivity in each region to a single central cluster of the other regions. The topographical architecture of multisensory attention may represent a mechanism for specificity in top-down control of attention from dorsolateral prefrontal and lateral orbitofrontal cortex and may represent an organizational unit for multisensory representations in the brain. show synchrony of slow (<0.08 Hz) fluctuations in functional MRI (fMRI) signal (1-3). A network of brain regions known to be active during states of high attention to sensory stimuli or performance of attention-demanding tasks, the attention control network, or task positive network (4-6), reproducibly shows high functional connectivity between regions in the network. A separate interconnected network, the default mode, or task negative network (7-9), is comprised of brain regions more active during rest or attention to internal stimuli or narrative (10). We use here the nomenclature "attention control" and "default mode" networks rather than "task positive" or "task negative" networks because the positive or negative activation of each of these networks depends entirely on whether the task measures internal mentalization or attention to external stimuli (11), and both may be coactivated or have similar behavioral associations (12).The attention control network consists of two primary subnetworks. The dorsal attention network is composed of bilateral intraparietal sulcus (IPS), frontal eye fields (FEF), and lateral prefrontal cortex (4, 5) and has also been termed the executive control network (13). This network frequently shows coactivation with the cinguloinsular, or salience detection network, consisting of bilateral anterior insula, dorsal anterior cingulate/supplementary motor area (SMA), and bilateral middle temporal (MT + ) regions (13). These netwo...