Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians' clinical experience and judgments, the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients. Fuzzy multi-sets (FMSs) have a number of properties, which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making (GDM) problems. To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma (RCC) (T1 stage kidney tumor), this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients. First, we propose a conversion method of transforming FMSs into entropy fuzzy sets (EFSs) based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element (EFE) for ranking EFEs. Second, we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging (EFEAAWAA) and EFE Aczel-Alsina weighted geometric averaging (EFEAAWGA) operators. Third, we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs. Finally, the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs. The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.