We experimentally demonstrate the realization of a parity-time (PT) symmetry breaking in optically coupled semiconductor lasers (SCLs). The two SCLs are identical except for a detuning between their optical emission frequencies. This detuning is analogous to the gain-loss parameter found in optical PT systems. To model the coupled SCLs, we employ the standard rate equations describing the electric field and carrier inversion of each SCL, and show that, under certain conditions, the rate equations reduce to the canonical, two-site PTsymmetric model. This model captures the global behavior of the laser intensity as the system parameters are varied. Overall, we find that this bulk system (coupled SCLs) provides an excellent test-bed to probe the characteristics of PT-breaking transitions, including the effects of time delay.