We present a tutorial on the properties of the new ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux φ in a circuit, and complements a resistor R, a capacitor C, and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based on symmetry arguments, but was clearly experimentally demonstrated just this year. We present the properties of a single memristor, memristors in series and parallel, as well as ideal memristorcapacitor (MC), memristor-inductor (ML), and memristor-capacitor-inductor (MCL) circuits. We find that the memristor has hysteretic current-voltage characteristics. We show that the ideal MC (ML) circuit undergoes non-exponential charge (current) decay with two time-scales, and that by switching the polarity of the capacitor, an ideal MCL circuit can be tuned from overdamped to underdamped. We present simple models which show that these unusual properties are closely related to the memristor's internal dynamics. This tutorial complements the pedagogy of ideal circuit elements (R, C, and L) and the properties of their circuits.
Open physical systems with balanced loss and gain, described by non-Hermitian parity-time reflection symmetric Hamiltonians, exhibit a transition which could engender modes that exponentially decay or grow with time, and thus spontaneously breaks the -symmetry. Such -symmetry-breaking transitions have attracted many interests because of their extraordinary behaviors and functionalities absent in closed systems. Here we report on the observation of -symmetry-breaking transitions by engineering time-periodic dissipation and coupling, which are realized through state-dependent atom loss in an optical dipole trap of ultracold 6Li atoms. Comparing with a single transition appearing for static dissipation, the time-periodic counterpart undergoes -symmetry breaking and restoring transitions at vanishingly small dissipation strength in both single and multiphoton transition domains, revealing rich phase structures associated to a Floquet open system. The results enable ultracold atoms to be a versatile tool for studying -symmetric quantum systems.
Open systems with gain and loss, described by non-trace-preserving, non-Hermitian Hamiltonians, have been a subject of intense research recently. The effect of exceptional-point degeneracies on the dynamics of classical systems has been observed through remarkable phenomena such as the paritytime symmetry breaking transition, asymmetric mode switching, and optimal energy transfer. On the other hand, consequences of an exceptional point for quantum evolution and decoherence are hitherto unexplored. Here, we use post-selection on a three-level superconducting transmon circuit with tunable Rabi drive, dissipation, and detuning to carry out quantum state tomography of a single dissipative qubit in the vicinity of its exceptional point. Quantum state tomography reveals the PT symmetry breaking transition at zero detuning, decoherence enhancement at finite detuning, and a quantum signature of the exceptional point in the qubit relaxation state. Our observations demonstrate rich phenomena associated with non-Hermitian physics such as non-orthogonality of eigenstates in a fully quantum regime and open routes to explore and harness exceptional point degeneracies for enhanced sensing and quantum information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.