Disruptive selection arises when extreme phenotypes have a fitness advantage compared to more intermediate phenotypes. Theory and evidence suggest that intraspecific resource competition is a key driver of disruptive selection. However, while competition can be indirect (exploitative) or direct (interference), the role of interference competition in disruptive selection has not been tested, and most models of disruptive selection assume exploitative competition. We experimentally investigated whether the type of competition affects the outcome of competitive interactions using a system where disruptive selection is common: Mexican spadefoot toads (Spea multiplicata). Spea tadpoles develop into alternative resource-use phenotypes: carnivores, which consume fairy shrimp and other tadpoles, and omnivores, which feed on algae and detritus. Tadpoles intermediate in phenotype have low fitness when competition is intense, as they are outcompeted by the specialized tadpoles. Our experiments revealed that the presence of carnivores significantly decreased foraging behavior in intermediate tadpoles, and that intermediate tadpoles had significantly lower growth rates in interference competition treatments with carnivores but not with omnivores. Interference competition may therefore be important in driving disruptive selection. As carnivore tadpoles are also cannibalistic, the ‘fear’ effect may have a greater impact on intermediate tadpoles than exploitative competition alone, similarly to non-consumptive effects in predator-prey or intraguild relationships.