2017
DOI: 10.14232/ejqtde.2017.1.59
|View full text |Cite
|
Sign up to set email alerts
|

Constant sign solution for a simply supported beam equation

Abstract: The aim of this paper is to study the following fourth-order operator:coupled with the non-homogeneous simply supported beam boundary conditions:First, we prove a result which makes an equivalence between the strongly inverse positive (negative) character of this operator with the previously introduced boundary conditions and with the homogeneous boundary conditions, given by:Once that we have done that, we prove several results where the strongly inverse positive (negative) character of T [p, c] it is ensured… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
10
0
1

Year Published

2018
2018
2021
2021

Publication Types

Select...
4
1

Relationship

2
3

Authors

Journals

citations
Cited by 7 publications
(12 citation statements)
references
References 13 publications
1
10
0
1
Order By: Relevance
“…Proof From the proof of Cabada and Saavedra, , theorem 6.1 the following inequalities are fulfilled for M ∈(− λ 1 ,− λ 2 ]. false(+>false)1em1emgMfalse(t,sfalse)>00.1em,1em0.1emfalse(t,sfalse)false(a,bfalse)×false(a,bfalse)0.1em,false(+>false)0.1emgMfalse(t,sfalse)tfalse|t=a>00.1em,1em0.1emsfalse(a,bfalse)0.1em,false(+>false)0.1emgMfalse(t,sfalse)sfalse|s=a>00.1em,1em0.1emtfalse(a,bfalse)0.1em,false(<false)gMfalse(t,sfalse)tfalse|t=b<00.1em,1em0.1emsfalse(a,bfalse)0.1em,false(<false)gMfalse(t,sfalse)sfalse|s=b<00.1em,1em0.1emtfalse(a,bfalse)0.1em. Consider normalΦfalse(sfalse)=false(safalse)0.1emfalse(bsfalse)>00.1em,1em0.1emsfalse(a,bfalse)0.1e...…”
Section: Fixed Point Formulation and Preliminary Resultsunclassified
See 3 more Smart Citations
“…Proof From the proof of Cabada and Saavedra, , theorem 6.1 the following inequalities are fulfilled for M ∈(− λ 1 ,− λ 2 ]. false(+>false)1em1emgMfalse(t,sfalse)>00.1em,1em0.1emfalse(t,sfalse)false(a,bfalse)×false(a,bfalse)0.1em,false(+>false)0.1emgMfalse(t,sfalse)tfalse|t=a>00.1em,1em0.1emsfalse(a,bfalse)0.1em,false(+>false)0.1emgMfalse(t,sfalse)sfalse|s=a>00.1em,1em0.1emtfalse(a,bfalse)0.1em,false(<false)gMfalse(t,sfalse)tfalse|t=b<00.1em,1em0.1emsfalse(a,bfalse)0.1em,false(<false)gMfalse(t,sfalse)sfalse|s=b<00.1em,1em0.1emtfalse(a,bfalse)0.1em. Consider normalΦfalse(sfalse)=false(safalse)0.1emfalse(bsfalse)>00.1em,1em0.1emsfalse(a,bfalse)0.1e...…”
Section: Fixed Point Formulation and Preliminary Resultsunclassified
“…Let us choose I =[0,1], and, in Cabada and Saavedra, there are obtained the different eigenvalues of operators T40false[0false]=d4dt4. λ 1 = π 4 is the least positive eigenvalue of T40false[0false] in X . λ2=m142ptdouble-struck≊5.554, where m 1 is the least positive solution of tanm2=tanhm2 is the biggest negative eigenvalue of T40false[0false] in X 1 and X 3 . λ3=m242ptdouble-struck≊2pt3.9274, with m 2 the least positive solution of tan(m)=tanh(m) is the least positive eigenvalue of T40false[0false] in U 1 and U 2 . …”
Section: Existence Results For Particular Simply Supported Beam Problemsmentioning
confidence: 99%
See 2 more Smart Citations
“…However, unlike Drábek and Holubová, we have to reflect the fact that our solution exhibits discontinuity of the first kind in its third derivative at the points where impulses are applied. The importance of the positivity and negativity of the Green function for the study of beam equations is also stressed in previous studies . Beam equations with singular data are studied in papers but different approach as well as different functional analytic framework is used there.…”
Section: Introductionmentioning
confidence: 99%