A. We consider correlations, , , arising from measuring a maximally entangled state using measurements with two outcomes each, constructed from projections that add up to . We show that the correlations , robustly self-test the underlying states and measurements. To achieve this, we lift the group-theoretic Gowers-Hatami based approach for proving robust self-tests to a more natural algebraic framework. A key step is to obtain an analogue of the Gowers-Hatami theorem allowing to perturb an "approximate" representation of the relevant algebra to an exact one.For = 4, the correlations , self-test the maximally entangled state of every odd dimension as well as 2-outcome projective measurements of arbitrarily high rank. The only other family of constant-sized self-tests for strategies of unbounded dimension is due to Fu (QIP 2020) who presents such self-tests for an infinite family of maximally entangled states with even local dimension. Therefore, we are the first to exhibit a constant-sized self-test for measurements of unbounded dimension as well as all maximally entangled states with odd local dimension.