2015
DOI: 10.1016/j.mechmat.2015.05.006
|View full text |Cite
|
Sign up to set email alerts
|

Constitutive modeling of Mg–9Li–3Al–2Sr–2Y at elevated temperatures

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
19
0

Year Published

2015
2015
2024
2024

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 51 publications
(19 citation statements)
references
References 26 publications
0
19
0
Order By: Relevance
“…The calculated value was lower than those of the rolled single α-phase Mg–Li alloy (211 kJ/mol) [ 24 ], as-cast LAZ532 (160 kJ/mol) [ 3 ], commercial AZ80 alloy (216 kJ/mol) [ 36 ], extruded-state α(Mg)–β(Li) duplex phase Mg–Li alloy (148 kJ/mol) [ 37 ], as-cast Mg–2 Zn–0.3 Zr–0.9 Y alloy (236.2 kJ/mol) [ 38 ], and as-cast Mg–3 Sn–Ca alloy (236 kJ/mol) [ 39 ]. Despite being related to the other Mg–Li alloys with α + β duplex phases or a single β -phase, the deformation activation energy in the presented work was higher than those of the as-cast α + β alloy (127 kJ/mol) [ 40 ], the as-cast single β -phase Mg–Li alloy (95 kJ/mol) [ 41 ], the as-cast Mg–8 Li–3 Al–2 Zn alloy modified with Zr (108 kJ/mol) [ 8 ], the as-cast Mg–9 Li–1 Zn alloy (127 kJ/mol) [ 42 ], the as-cast Mg–11.5 Li–1.5 Al alloy (95 kJ/mol) [ 43 ], the as-cast Mg–3 Sn–2 Al–1 Zn–5 Li (139 kJ/mol) [ 44 , 45 ], the as-cast Mg–9 Li–3 Al alloy with Sr addition (110 kJ/mol) [ 46 ], and as-cast LA43M (110 kJ/mol) [ 4 ].…”
Section: Resultsmentioning
confidence: 99%
“…The calculated value was lower than those of the rolled single α-phase Mg–Li alloy (211 kJ/mol) [ 24 ], as-cast LAZ532 (160 kJ/mol) [ 3 ], commercial AZ80 alloy (216 kJ/mol) [ 36 ], extruded-state α(Mg)–β(Li) duplex phase Mg–Li alloy (148 kJ/mol) [ 37 ], as-cast Mg–2 Zn–0.3 Zr–0.9 Y alloy (236.2 kJ/mol) [ 38 ], and as-cast Mg–3 Sn–Ca alloy (236 kJ/mol) [ 39 ]. Despite being related to the other Mg–Li alloys with α + β duplex phases or a single β -phase, the deformation activation energy in the presented work was higher than those of the as-cast α + β alloy (127 kJ/mol) [ 40 ], the as-cast single β -phase Mg–Li alloy (95 kJ/mol) [ 41 ], the as-cast Mg–8 Li–3 Al–2 Zn alloy modified with Zr (108 kJ/mol) [ 8 ], the as-cast Mg–9 Li–1 Zn alloy (127 kJ/mol) [ 42 ], the as-cast Mg–11.5 Li–1.5 Al alloy (95 kJ/mol) [ 43 ], the as-cast Mg–3 Sn–2 Al–1 Zn–5 Li (139 kJ/mol) [ 44 , 45 ], the as-cast Mg–9 Li–3 Al alloy with Sr addition (110 kJ/mol) [ 46 ], and as-cast LA43M (110 kJ/mol) [ 4 ].…”
Section: Resultsmentioning
confidence: 99%
“…In order to predict the flow stress over a wide range of temperatures and strains, it is necessary to interpolate the obtained values by a certain continuous function. Strain-dependent material parameters are most often translated by a polynomial curve of a certain degree [30,31]. To select the polynomial degree correctly, we fitted obtained points by the polynomials from the 2nd to 7th order and based on the quality of fitting, represented by the coefficient of determination R 2 , the final decision for an appropriate equation selection could be made.…”
Section: Constitutive Modellingmentioning
confidence: 99%
“…Mainly featured by continuous dynamic softening, the flow stress decreases after peak stress smoothly until it becomes steady. During the steady stage, the dynamic recrystallization and work hardening achieve a new balance so that the flow stress no longer changes with the increase of the strain, and steady flow of material forms [24]. accompanied by dynamic softening, but work hardening is still the main deformation mechanism.…”
Section: Hot Compression Flow Behaviormentioning
confidence: 99%