Tetrahydrofuran (THF) is a major structural feature found in many synthetic and natural products displaying a variety of biological properties. This review summarizes the main synthetic approaches that have been developed to construct tetrahydrofuran moieties involving debenzylative cycloetherification reactions (DBCE). Interestingly, this reaction is regio- and stereoselective without the requirement of a selective protection/deprotection strategy. Many applications of this process have been reported, including carbafuranoside synthesis, regioselective deprotection of the benzyl group positioned γ to an alkene, and total synthesis of natural products. The stereochemical outcome and the mechanism of these interesting transformations are also discussed.