Rhododendron delavayi Franch. is globally famous as an ornamental plant. Its distribution in southwest China covers several different habitats and environments. However, not much research had been conducted on Rhododendron spp. at the molecular level, which hinders understanding of its evolution, speciation, and synthesis of secondary metabolites, as well as its wide adaptability to different environments. Here, we report the genome assembly and gene annotation of R. delavayi var. delavayi (the second genome sequenced in the Ericaceae), which will facilitate the study of the family. The genome assembly will have further applications in genome-assisted cultivar breeding. The final size of the assembled R. delavayi var. delavayi genome (695.09 Mb) was close to the 697.94 Mb, estimated by k-mer analysis. A total of 336.83 gigabases (Gb) of raw Illumina HiSeq 2000 reads were generated from 9 libraries (with insert sizes ranging from 170 bp to 40 kb), achieving a raw sequencing depth of ×482.6. After quality filtering, 246.06 Gb of clean reads were obtained, giving ×352.55 coverage depth. Assembly using Platanus gave a total scaffold length of 695.09 Mb, with a contig N50 of 61.8 kb and a scaffold N50 of 637.83 kb. Gene prediction resulted in the annotation of 32 938 protein-coding genes. The genome completeness was evaluated by CEGMA and BUSCO and reached 95.97% and 92.8%, respectively. The gene annotation completeness was also evaluated by CEGMA and BUSCO and reached 97.01% and 87.4%, respectively. Genome annotation revealed that 51.77% of the R. delavayi genome is composed of transposable elements, and 37.48% of long terminal repeat elements (LTRs). The de novo assembled genome of R. delavayi var. delavayi (hereinafter referred to as R. delavayi) is the second genomic resource of the family Ericaceae and will provide a valuable resource for research on future comparative genomic studies in Rhododendron species. The availability of the R. delavayi genome sequence will hopefully provide a tool for scientists to tackle open questions regarding molecular mechanisms underlying environmental interactions in the genus Rhododendron, more accurately understand the evolutionary processes and systematics of the genus, facilitate the identification of genes encoding pharmaceutically important compounds, and accelerate molecular breeding to release elite varieties.
The cytotoxicity of the natural ent-kaurene diterpenoid, oridonin, has been extensively studied. However, the application of oridonin for cancer therapy was hampered primarily by its moderate potency. In this study, a series of oridonin A-ring modified analogues, and their derivatives bearing various substituents on 14-OH position, were designed, synthesized, and evaluated for anticancer efficacy. Some of the derivatives were significantly more potent than oridonin against both drug-sensitive and drug-resistant cancer cells. The most potent compound, 13p, was 200-fold more efficacious than oridonin in MCF-7 cancer cells. Furthermore, 13p induced apoptosis and cell cycle arrest at the G2/M phase. A decrease in mitochondrial membrane potential and an increase in Bax/Bcl-2 ratio, accompanied by activated caspase-3 cleavage, were observed in MCF-7 cells after treatment with 13p, suggesting that the mitochondrial pathway was involved in the 13p-mediated apoptosis. Moreover, 13p significantly inhibited tumor growth in mouse xenograft models and had no observable toxic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.