The surface air temperature (SAT) trend on the Tibetan Plateau (TP) was 3.45°C 100 years−1 from 1961 to 2014. The multi‐model ensemble (MME) of 33 coupled models participated in the Coupled Model Intercomparison Project phase six (CMIP6) was about 1°C 100 years−1 lower than the observation. Although MME generally shows better skill in reproducing the distribution of SAT trend over TP than most of the CMIP6 models, its performance is greatly degraded by a small group of models, about 12% on average, with large biases. In this paper, the constrained multi‐model ensemble (CMME) based on a certain observation‐based threshold is used to constrain future projections of the SAT trend over TP. Compared with the MME results, the improvements in CMME are mainly over the eastern plateau in historical simulation and are relative to the reduction of the model biases to carbon dioxide (CO2) forcing. Under the high‐emission SSP5‐8.5 scenario, SAT increases significantly over the entire TP. The constraint of CMME on the MME is mainly over the eastern plateau with a difference of 0.5°C 100 years−1, about 6% of the MME results. Under the intermediate‐emission scenario SSP2‐4.5, the effect of CMME is relatively smaller, but the corresponding spatial distribution is similar to that under the SSP5‐8.5 scenario. The CMIP6 models tend to underestimate the warming trend projections over the water source regions in the northeastern plateau and should be noticed.