We review the prospects of probing R-parity violating Supersymmetry (RPV SUSY) at neutrino telescopes using some of the highest energy particles given to us by Nature. The presence of RPV interactions involving ultra-high energy neutrinos with Earth-matter can lead to resonant production of TeV-scale SUSY partners of the SM quarks and leptons (squarks and sleptons), thereby giving rise to potentially anomalous behavior in the event spectrum observed by largevolume neutrino detectors, such as IceCube, as well as balloon-borne cosmic ray experiments, such as ANITA. Using the ultra-high energy neutrino events observed recently at IceCube, with the fact that for a given power-law flux of astrophysical neutrinos, there is no statistically significant deviation in the current data from the Standard Model expectations, we derive robust upper limits on the RPV couplings as a function of the resonantly-produced squark mass, independent of the other unknown model parameters, as long as the squarks decay dominantly to two-body final states involving leptons and quarks through the RPV couplings. Also, we discuss RPV SUSY interpretations of the recent anomalous, upward-going EeV air showers observed at ANITA, in terms of long-lived charged or neutral next-to-lightest SUSY particles.