Primordial black holes can have substantial spin-a fundamental property that has a strong effect on its evaporation rate. We conduct a comprehensive study of the detectability of primordial black holes with non-negligible spin, via the searches for the neutrinos and positrons in the MeV energy range. Diffuse supernova neutrino background searches and observation of the 511 keV gamma-ray line from positrons in the Galactic center set competitive constraints. Spinning primordial black holes are probed up to a slightly higher mass range compared to nonspinning ones. Our constraint using neutrinos is slightly weaker than that due to the diffuse gamma-ray background, but complementary and robust. Our positron constraints are typically weaker in the lower mass range and stronger in the higher mass range for the spinning primordial black holes compared to the nonspinning ones. They are generally stronger than those derived from the diffuse gamma-ray measurements for primordial black holes having masses greater than a few ×10 16 g.
Late time decay of very heavy dark matter is considered as one of the possible explanations for diffuse PeV neutrinos observed in IceCube. We consider implications of multimessenger constraints, and show that proposed models are marginally consistent with the diffuse γ-ray background data. Critical tests are possible by a detailed analysis and identification of the sub-TeV isotropic diffuse γ-ray data observed by Fermi and future observations of sub-PeV γ rays by observatories like HAWC or Tibet AS þ MD. In addition, with several-year observations by next-generation telescopes such as IceCube-Gen2, muon neutrino searches for nearby dark matter halos such as the Virgo cluster should allow us to rule out or support the dark matter models, independently of γ-ray and anisotropy tests.
We derive the strongest constraint on the fraction of dark matter that can be composed of low mass primordial black holes by using the observation of the Galactic Center 511 keV gamma-ray line. Primordial black holes of masses 10 15 kg will evaporate to produce e ± pairs. The positrons will lose energy in the Galactic Center, become non-relativistic, and then annihilate with the ambient electrons. We derive robust and conservative bounds by assuming that the rate of positron injection via primordial black hole evaporation is less than what is required to explain the SPI/ INTEGRAL observation of the Galactic Center 511 keV gamma-ray line. Depending on the primordial black hole mass function and other astrophysical uncertainties, these constraints are the most stringent in the literature and show that primordial black holes contribute to less than 1% of the dark matter density. Our technique also probes part of the mass range which was completely unconstrained by previous studies.
The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has yielded unprecedented measurements of the soft gamma-ray spectrum of our Galaxy. Here we use those measurements to set constraints on dark matter (DM) that decays or annihilates into photons with energies E ≈ 0.02-2 MeV. First, we revisit the constraints on particle DM that decays or annihilates to photon pairs. In particular, for decaying DM, we find that previous limits were overstated by roughly an order of magnitude. Our new, conservative analysis finds that the DM lifetime must satisfy τ ≳ 5 × 10 26 s × ðm χ =MeVÞ −1 for DM masses m χ ¼ 0.054-3.6 MeV. For MeV-scale DM that annihilates into photons INTEGRAL sets the strongest constraints to date. Second, we target ultralight primordial black holes (PBHs) through their Hawking radiation. This makes them appear as decaying DM with a photon spectrum peaking at E ≈ 5.77=ð8πGM PBH Þ, for a PBH of mass M PBH. We use the INTEGRAL data to demonstrate that, at 95% C.L., PBHs with masses less than 1.2 × 10 17 g cannot comprise all of the DM, setting the tightest bound to date on ultralight PBHs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.