The aim of this study was to evaluate complexing capacity (CC) accompanying microbial growth in a metal supplemented culture medium. A combined strategy of square wave anodic stripping voltammetry (SWASV) monitored titration and ion-exchange resins treatment (Chelex 100) has been applied. Culture medium, supplemented with Cd(II) in excess to ligands, was inoculated with an indigenous bacterial culture; total ligand concentration and stability constants were determined at different bacterial growth stages. As far as known, determination of CC in such conditions has not been reported (usually ligands in natural or wastewaters exceed metal concentration). HIDA, (N-(2-hydroxyethyl)iminodiacetic acid), was used as a model ligand to mimic soluble products derived from the resin treatment and bacterial metabolism. Ligand concentration, Lt (1.3 ± 0.1 lM), and the conditional stability constant, K 0 , (log K 0 = 5.7 ± 0.2) were in good agreement with expected values (1.0 ± 0.1 lM and log K 0 = 6.1). In the supplemented culture medium, total ligand concentration in the micromolar range (60-80 lM) and conditional stability constants (5.5 \ log K 0 \ 6.5) were determined. Cd(II) complexes detected in the different stages of microbial growth are labile from an electrochemical point of view. Results were compared to the case of Cd(II) non-supplemented broth.