Experimentally investigates heat dissipation by different longitudinal fins fitted to a cylindrical heat sink under natural convection conditions. Five aluminum fin configurations at base temperatures (70°C, 85°C, 100°C, and 115°C) were studied. The first fin was plain (fin1), while second fin had a triangular edge (fin2). The rest fins have the same triangular edge but with six 1cm circular perforations near the edge (fin3). While the perforations in fin4 were in the middle longitudinal fin length. The last fin (fin5) had twelve 0.5 cm circular perforations distributed into two columns. The measurements were validated with theoretical correlation with an acceptable deviation. The results showed that fin2, fin3, fin4, and fin5 dissipate more heat by 2.4%, 8.7%, 11.4%, and 5% than the flat fin with 9.8%, 11.85%, 11.85%, and 10.82% weight reduction, respectively. The heat transfer coefficient enhanced by 7.98%, 16.81%, 12.35%, and 5.44% for fin5, fin4, fin3, and fin2, respectively. Large circular perforation was more effective to dissipate heat especially when located near the heat source as in fin4 which gives the best heat dissipation with more weight reduction. The proposed fins efficiency were greater than 92%.