2020
DOI: 10.1007/s13366-020-00486-8
|View full text |Cite
|
Sign up to set email alerts
|

Constructing symplectomorphisms between symplectic torus quotients

Abstract: We identify a family of torus representations such that the corresponding singular symplectic quotients at the 0-level of the moment map are graded regularly symplectomorphic to symplectic quotients associated to representations of the circle. For a subfamily of these torus representations, we give an explicit description of each symplectic quotient as a Poisson differential space with global chart as well as a complete classification of the graded regular diffeomorphism and symplectomorphism classes. Finally,… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 15 publications
0
0
0
Order By: Relevance