There exist many tools and methods for construction of co-expression network from gene expression data and for extraction of densely connected gene modules. In this paper, a method is introduced to construct co-expression network and to extract co-expressed modules having high biological significance. The proposed method has been validated on several well known microarray datasets extracted from a diverse set of species, using statistical measures, such as p and q values. The modules obtained in these studies are found to be biologically significant based on Gene Ontology enrichment analysis, pathway analysis, and KEGG enrichment analysis. Further, the method was applied on an Alzheimer's disease dataset and some interesting genes are found, which have high semantic similarity among them, but are not significantly correlated in terms of expression similarity. Some of these interesting genes, such as MAPT, CASP2, and PSEN2, are linked with important aspects of Alzheimer's disease, such as dementia, increase cell death, and deposition of amyloid-beta proteins in Alzheimer's disease brains. The biological pathways associated with Alzheimer's disease, such as, Wnt signaling, Apoptosis, p53 signaling, and Notch signaling, incorporate these interesting genes. The proposed method is evaluated in regard to existing literature.The volume of data obtained by microarray or other new high throughput technologies have been increasing enormously, and as a result, the biological databases are growing enormously. The key challenge is to analyze these large amount of data and extract meaningful information. Therefore, it is an interesting and challenging task to represent these data in an easy way, so that researchers can communicate and interpret data efficiently. A biological network graph allows interactive visual representation and analysis of data. In a biological network, nodes represent bio-entities (genes or proteins) and edges represent associations between the bio-entities. The biological networks can be categorized broadly based on their constituent bio-entities, such as, protein-protein interaction network, gene co-expression network (CEN), and metabolic network. These biological networks encode the relationships, such as, correlation, co-expression, and co-regulation, among the bio-entities.A gene CEN is defined as an undirected graph, where two genes are connected to each other if their expression levels are similar across conditions. Information related to physical-interaction, genetic interaction, shared protein domains, co-localization, pathway, and predicted functions can be inferred from a gene CEN 1 . A gene CEN primarily shows correlation or association in a pair of genes in terms of standard correlation measures and mutual information. These networks encode the relationships of each entity with its neighbors, which helps in geometrical interpretations for extraction of functionally related genes or network modules.There are many established methods for construction of CEN based on various approaches and cor...