Located in an ecologically fragile area in China’s eastern part of the Loess Plateau, Shuozhou City has faced environmental challenges imposed by frequent urban expansion and mining activities in recent years. As ecological security patterns (ESP) identification and optimization are significant to regional biodiversity and ecosystem services, this study combined morphological spatial pattern analysis (MSPA) and circuit theory to construct and optimize regional ESP. Results show the number and area of ecological sources in the study area decreased from 21 to 20 between 2010 and 2017. The total area of ecological sources fell from 1923.35 km2 to 1869.37 km2, with their proportion in the study area dropped from 18.14% to 17.64%. From 2010 to 2017, the number of obstacles increases from 63 to 80, mainly consisting of farmland, unused land, transportation land, and construction land. The area of obstacles reached 10.17 km2 in 2017. A framework of “one protection area, two regulation areas, and three restoration areas” is proposed to optimize the ESP of the study zone. This study explored a combination of ESP analysis tools and focused on improving regional ecosystem service and biodiversity. It will support local urban planning and provide a reference for similar studies in resource-based cities.