2011
DOI: 10.3934/jmd.2011.5.409
|View full text |Cite
|
Sign up to set email alerts
|

Contact homology of orbit complements and implied existence

Abstract: For Reeb vector fields on closed 3-manifolds, cylindrical contact homology is used to show that the existence of a set of closed Reeb orbit with certain knotting/linking properties implies the existence of other Reeb orbits with other knotting/linking properties relative to the original set. We work out a few examples on the 3-sphere to illustrate the theory, and describe an application to closed geodesics on S 2 (a version of a result of Angenent in [Ang05]).

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
31
0
3

Year Published

2014
2014
2021
2021

Publication Types

Select...
5
1
1

Relationship

1
6

Authors

Journals

citations
Cited by 12 publications
(34 citation statements)
references
References 38 publications
0
31
0
3
Order By: Relevance
“…As before, this set of regular almost complex structures depends on (p, q) and T , but we do not make this explicit in the notation. Standard arguments [7,11,31,32] show that the set J reg ( J − , J + : K 0 ) contains a residual subset of J ( J − , J + : K 0 ). It is crucial here that P, P are simply covered, which is the case since the pair (p, q) is relatively prime.…”
Section: Denote By Mmentioning
confidence: 99%
“…As before, this set of regular almost complex structures depends on (p, q) and T , but we do not make this explicit in the notation. Standard arguments [7,11,31,32] show that the set J reg ( J − , J + : K 0 ) contains a residual subset of J ( J − , J + : K 0 ). It is crucial here that P, P are simply covered, which is the case since the pair (p, q) is relatively prime.…”
Section: Denote By Mmentioning
confidence: 99%
“…From the perspective of 3-dimensional topology, it would be interesting to have examples of contact structures on hyperbolic 3manifolds on which every Reeb flow has positive topological entropy. Lastly we mention that the techniques used in this paper and in [2], can also be used in combination with the ideas of Momin [33] to establish chaotic behavior of Reeb flows on (S 3 , ξ tight ), when these Reeb flows have a a special link as a Reeb orbit. This and similar results will appear in [3].…”
Section: Questionmentioning
confidence: 96%
“…Choose almost complex structures J + ∈ J ρ reg (λ + ) and J − ∈ J ρ reg (λ − ). From the work of Dragnev [11] (see also section 2.3 in [33]) we know that there is a generic subset J ρ reg…”
Section: Cylindrical Contact Homology In Special Homotopy Classesmentioning
confidence: 99%
“…Observe que, seũ = (a, u) : Σ \ Γ → R × Mé uma superfície de energia finita na simpletização R × M , então a equação (1.41) pode ser reescrita como 45) onde π : T M → ξé a projeção ao longo da direção de X λ . Além disso, seũ = (a, u) : U → R×Ḿ e uma superfície de energia finita na simpletização R × M e U ⊂ Cé um aberto, então (1.41) se resume aũ s +J(ũ)ũ t = 0, onde s + it são coordenadas em C.…”
Section: Curvas Pseudo-holomorfasunclassified
“…de um conjunto deórbitas fechadas L que sabemos existir. Por exemplo, se em S 3 existe um link de Hopf L = L 0 ∪ L 1 , onde L 0 , L 1 sãoórbitas fechadas de Reeb, tal que os números de rotação transversal L 0 , L 1 satisfazem uma certa condição de não-ressonância, Hryniewicz, Momin e Salomão provam em [36], usando a homologia de contato cilíndrica no complementar de L, que existem infinitasórbitas fechadas de Reeb enlaçadas em L. Usando técnicas semelhantes, Momin prova em [45] que, para certos links L deórbitas fechadas, existem determinadas classes de homotopia de curvas fechadas no complementar de L que sempre possuem umaórbita fechada de Reeb. Nesta tese, apresentamos dois resultados de existência implicada deórbitas fechadas.…”
Section: Introductionunclassified