The class of bipartite permutation graphs enjoys many nice and important properties. In particular, this class is critically important in the study of clique‐ and rank‐width of graphs, because it is one of the minimal hereditary classes of graphs of unbounded clique‐ and rank‐width. It also contains a number of important subclasses, which are critical with respect to other parameters, such as graph lettericity or shrub‐depth, and with respect to other notions, such as well‐quasi‐ordering or complexity of algorithmic problems. In the present paper we identify critical subclasses of bipartite permutation graphs of various types.