In this paper, we reveal an intriguing relationship between two seemingly unrelated notions: letter graphs and geometric grid classes of permutations. An important property common for both of them is well-quasi-orderability, implying, in a non-constructive way, a polynomial-time recognition of geometric grid classes of permutations and k-letter graphs for a fixed k. However, constructive algorithms are available only for k = 2. In this paper, we present the first constructive polynomial-time algorithm for the recognition of 3-letter graphs. It is based on a structural characterization of graphs in this class. * An extended abstract of this paper was published in [2].
How to cite:Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
The class of quasi-chain graphs is an extension of the well-studied class of chain graphs. This latter class enjoys many nice and important properties, such as bounded clique-width, implicit representation, well-quasi-ordering by induced subgraphs, etc. The class of quasi-chain graphs is substantially more complex. In particular, this class is not well-quasi-ordered by induced subgraphs, and the clique-width is not bounded in it. In the present paper, we show that the universe of quasi-chain graphs is at least as complex as the universe of permutations by establishing a bijection between the class of all permutations and a subclass of quasi-chain graphs. This implies, in particular, that the induced subgraph isomorphism problem is NP-complete for quasi-chain graphs. On the other hand, we propose a decomposition theorem for quasi-chain graphs that implies an implicit representation for graphs in this class and efficient solutions for some algorithmic problems that are generally intractable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.