The current researches trend to adopt a low-resolution hot spot map to restore the original highresolution representation to save computing cost, resulting in unsatisfactory detection performance, especially in human body recognition with a highly complex background. Aiming at this problem, we proposed a model of parallel connection of multiple sub-networks with different resolution levels on a high-resolution main network. It can maintain the network structure of a high-resolution hot spot map in the whole operation process. By using this structure in the human key point vector field network, the accuracy of human posture recognition has been improved with high-speed operation. To validate the proposed model's effectiveness, two common benchmark data sets of COCO key point data set and MPII human posture data set are used for evaluation. Experimental results show that our network achieves the accuracy of 72.3% AP and 92.2% AP in the two data sets, respectively, which is 3%-4% higher than those of the existing mainstream researches. In our test, only the accuracy of backbone's SimpleBaseline with ResNet-152 is close to ours, yet our network realized a much lower computing cost.