Despite its rich history of success in controlling powered prostheses and emerging commercial interests in ubiquitous computing, myoelectric control continues to suffer from a lack of robustness. In particular, EMG-based systems often degrade over prolonged use resulting in tedious recalibration sessions, user frustration, and device abandonment. Unsupervised adaptation is one proposed solution that updates a model’s parameters over time based on its own predictions during real-time use to maintain robustness without requiring additional user input or dedicated recalibration. However, these strategies can actually accelerate performance deterioration when they begin to classify (and thus adapt) incorrectly, defeating their own purpose. To overcome these limitations, we propose a novel adaptive learning strategy, Context-Informed Incremental Learning (CIIL), that leverages in situ context to better inform the prediction of pseudo-labels. In this work, we evaluate these CIIL strategies in an online target acquisition task for two use cases: (1) when there is a lack of training data and (2) when a drastic and enduring alteration in the input space has occurred. A total of 32 participants were evaluated across the two experiments. The results show that the CIIL strategies significantly outperform the current state-of-the-art unsupervised high-confidence adaptation and outperform models trained with the conventional screen-guided training approach, even after a 45-degree electrode shift (p < 0.05). Consequently, CIIL has substantial implications for the future of myoelectric control, potentially reducing the training burden while bolstering model robustness, and leading to improved real-time control.